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Motivation
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User’s Intent




Objective




How to Determine the User’s Intent?
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A New Perspective of the
User's Intent




Objective

* Develop a model for the identification of the user’s intent,
using their past interaction with a Web search engine
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A new characterization of Web
user’s intents

Intents:

o Informational

o Not informational
o Ambiguous

Categories:
o Open Directory Project, ODP
o Adult, Various and Others
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Semi-manual Classification

* Pre-processing...

o Data Set: J
* More than 6,000 unique queries from @Engd

HILE EN INTERNET

o Query representation

» Words contained in the pages that users selected as answer
to his/her query
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o Clustering of Queries et
e K-Means model Z S
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Semi-manual Classification:
Goals

M Informational M Not Informational

' Ambiguous
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Semi-manual Classification:

Categories
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Semi-manual Classification:
Goals - Categories

100% | &
- - l
80% - d M M H
60% -
40% - “B-B-
20% -
0% -
2 o & 8 5§52 £ 2 58 < g 3 L 5 2 3
v § 5 £ ¥ ® o « o v £ %8 g 2 &£ £ E T
=z w o A 8 ()] ; % g hd o T E 3 + (4] <
& » 3 5 T -« w0 0O > 2 0 U
m S I e e
O Q (7]
Ll v O
o O
M Informational M Not Informational & Ambiguous

27

=\

O N ME RIS ET AT
POMPEU FABRA



Automatic Classification of Queries

* Probabilistic Latent Semantic Analysis (PLSA)

o Generative model of latent class

o PLSA uses the Expectation Maximization algorithm in
order to find the parameters of the model

o PLSA models have been applied to recommendation
problems and information retrieval, among others
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Automatic Classification of Queries

Clear identification of categories such as Adult,
Recreation, Business, Reference, or Health

Arts, Sports, Science, or Games?
New categories appear. Law — Cars

Relationships between guery categories
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Automatic vs. Manual Classification

Informational: Approx. 76% of
gueries were related with:

Society, Education, Health, —
Reference, Home, and
Computers

Not Informational: Approx. 70%
of queries were related with:
Recreation, Computers and
Adult

Ambiguous: Approx. 73% of
gueries were related with Adult
or Recreation
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Automatic Classification

Semi-manual Classification
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Contributions

* A new automatic categorization of the user’s intent

* The relationship between intents and informational
categories

* The use of a large sample of real user queries
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Multi-Dimensional Perspective of
the User’s Intent




Objective

* Explore and analyze the user’s intent from a multi-
dimensional perspective

o Propose a set of dimensions

o Delineate the relationships and dependencies that exist
among the dimensions involved in establishing the user’s
Intent
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Dimensions of the User’s Intent




Semi-Manual Classification of Queries
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Consistency of the Classification




Classification Capabillity of the
Dimensions: Results

o Correlation Based Feature Selection Algorithm, CFS




Association Rules: Results

Apriori Algorithm

Support Confidence
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Contributions

* A new vision of the user’s search intent as a problem of
multi-dimensional nature

* Analyze nine dimensions involved in the user need, four
of which are introduced by us

* To the light of the machine learning models applied, we
point out the prediction capability of each dimension




Towards On -Line ldentification of
the User’s Intent




Objective




Challenge Our Approach
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Tree Structured Distribution over
user intent dimensions  [ChowLiu, 1968]

o Find tree that maximizes the total
mutual information between the user
intent facets based on training data

p(X y)
| (X:Y) = I
)= o8 ay)

I(X;Y) =0 iff Xand Y are independent.

O Q(f. )
P(f) = G
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Conditional distribution of
guery words

* Each query word is independent of other query words
given the facets (of user intent)

* Learning (Maximum Likelihood Estimate)

L Query word — User Intent conditional distribution parameter
Q Facet Inter-relationship distribution parameter
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The FastQ Inference Algorithm

Inter-dependence between Facet i and Facet |

Facet |

Influence of query
word | on facet |
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Extending FastQ using WordNet

* Inference based on semantically related words in the
training data for a test query word not present in training
database

Maximum
depth of
search in
WordNet L

Average
number of
neighbors in Words used for inference in FastQ

WordNet ¢,y in lieu of unknown test query word




Evaluation

e Three models
o BASE

» Treats each facet independently

o WN

* Incorporates semantic information into BASE
» Uses synsets to find semantically related words

o FastQ
* Incorporates facet inter-relationships into WN
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Results: Facet classification

(Hamming error)
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Accuracy of Individual Facets

% Tr. data 10% 50%

Model BASE | WN | FASTQ | BASE | WN | FASTQ
author s. 50.07 | 61.64 | 81.14 | 55.97 | 64.82 | 81.70

genre 43.18 | 47.42 | 60.63 | 50.00 | 52.47 | 65.02

objective 86.03 | 83.24 | 83.01 | 86.19 | 85.62 | 8&5.59

scope 46.69 | 67.67 | 97.40 | 56.01 | 72.79 | 97.28

spatial s. 52.82 | 54.39 | 62.14 | 56.27 | 58.32 | 67.98
specificity | 77.24 | 73.96 | 77.51 | 77.08 | 76.41 | 78.14
task 75.21 | 71.90 | 71.64 | 76.87 | 75.78 | 76.04

time s. 44.61 | 64.87 | 98.64 | 54.37 | 71.38 | 98.43
topic 27.57 | 26.90 | 25.67 | 34.44 | 36.00 | 32.90




Single Facet Identification (Task)
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o FastQ performs better than other methods
0 Average classification time 2-3 ms, parallelizable
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Contributions

We cast the problem of identifying user intent from Web
search gueries as an inference problem, and present a tree
structured graphical model for modeling the user intent based
on just the query words

We incorporate WordNet, a lexical database, to idenfify new
words present in the search query which are absent in the
existing training vocabulary

We propose a generic framework which can be extended by
using other dimensions or query features, and thus enabling it
use in other settings




Conclusions & Future Work




Conclusions

* We have applied several Unsupervised Learning models for
the automatic identification of the user’s intent

* From the applied models we proved that it is possible to
identify the user’s intent in an automatic way

* Unsupervised Learning models offer the possibility to discover
the user’s intent without any additional information, avoiding
the cost of having labeled data

* The natural way to group the data with unsupervised learning
technigues allows to find new patterns reflecting a closser
view of the user’s intent




Overall Comparison

I S I O

a2 i/l 2 102

+1( +1:9 +1=9 2 .- +1== +1=9 +1( +1=  +1(9

B 25 <1 417 +1  +1(+ 419 +17 41 +179

% 2.8 +1+ +1+ +1 +1 41 ( +1=  +1= +17

0 Supervised: Support Vector Machines
O Semi-Supervised: Semi-supervised Linear SVM.

0 Unsupervised: Probabilistic Latent Semantic Analysis




Paths for Future Work
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Queries?
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